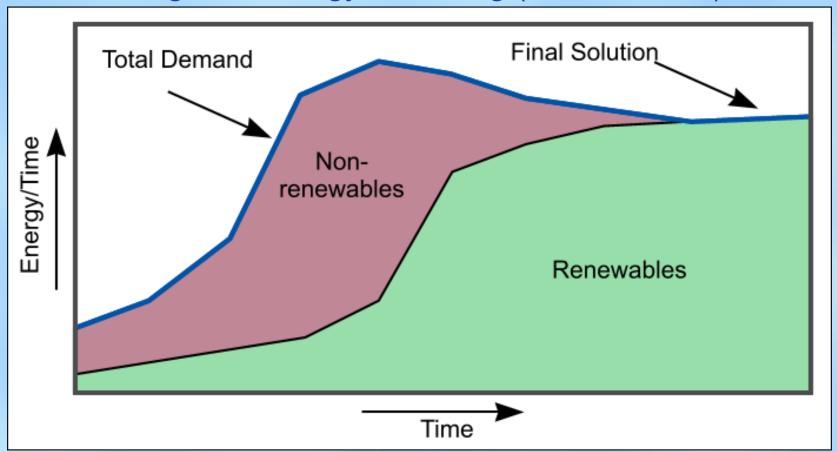
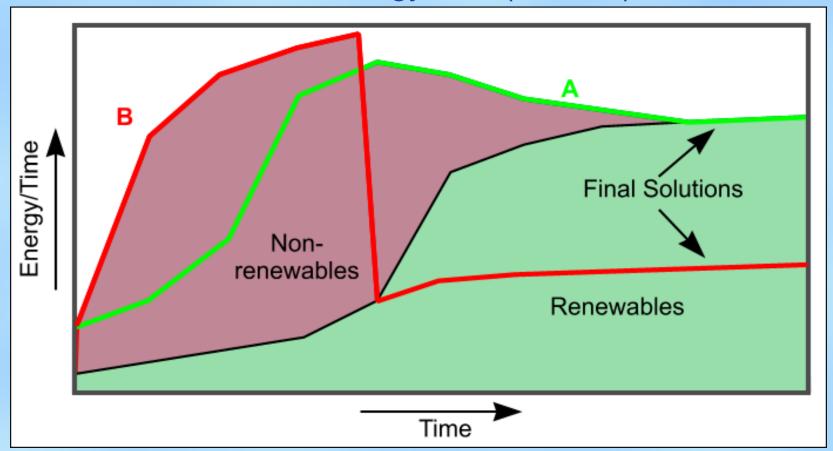
Energy Criteria for Sustainable Energy Solutions


Gordon Taylor
G T Systems

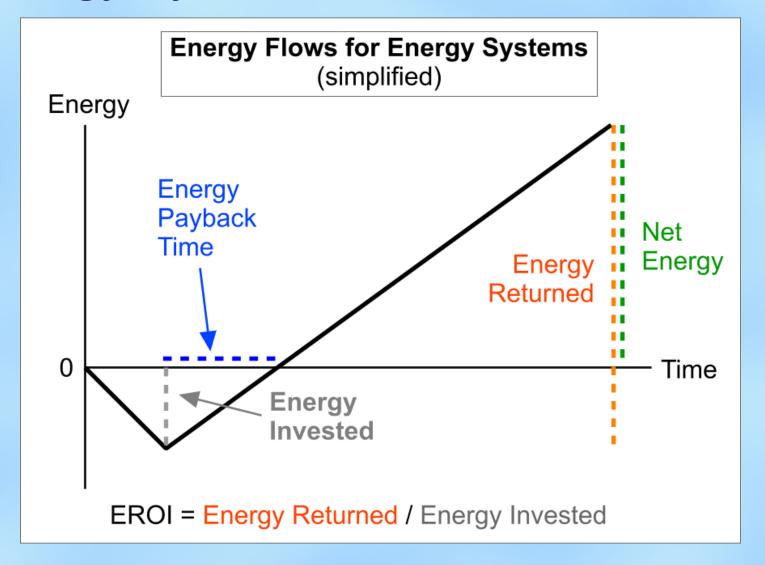
Overview

- Transitions Smooth and Abrupt
- Energy Analysis
- Climate Limits and Carbon Reserves
- Criteria for Sustainable Energy Solutions
- Sectoral examples
- Transition studies for World and OECD
- A smooth transition to sustainability requires the energy choices to be science-based


Transitions - Smooth

A transition to a sustainable society can be found using 'backcasting' and energy modelling (Mulder, 1995).

Transitions - and Abrupt


Unfocussed use of the limited carbon budget would give much less sustainable energy/time (curve B).

Energy Analysis

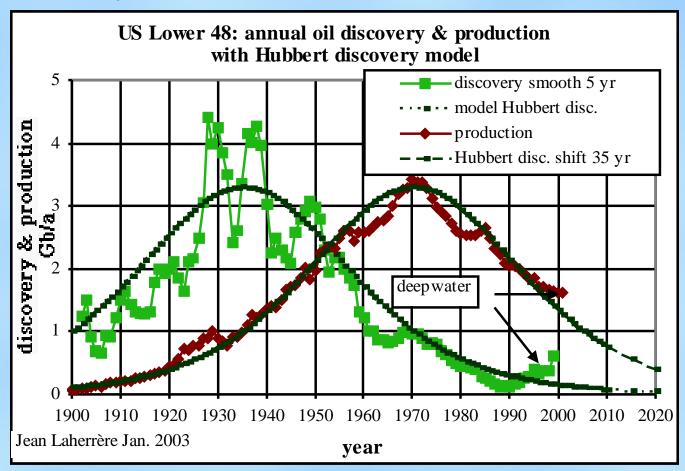
- Energy is invested and flows much like money.
- Energies may be quantified by 'Life Cycle Analysis'.
- This uses 'Process Analysis' or 'Input-Output Analysis'.
- There are databases of LCAs, such as the Swiss 'Ecolnvent' and the German 'GEMIS'.
- There are software packages for accessing these.

Energy System Metrics

Climate Limits for Energy

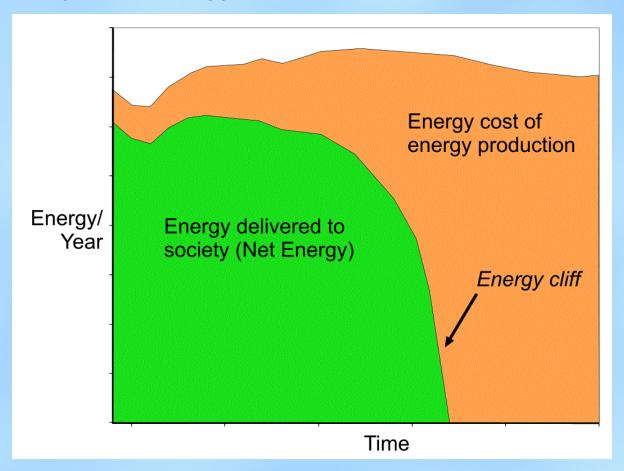
Gross Climate Limit: 4.90 GtCeq/y (IPCC for 2000-2100)

- Land use change: 1.60 GtCeq/y (IPCC for 2000-2100)

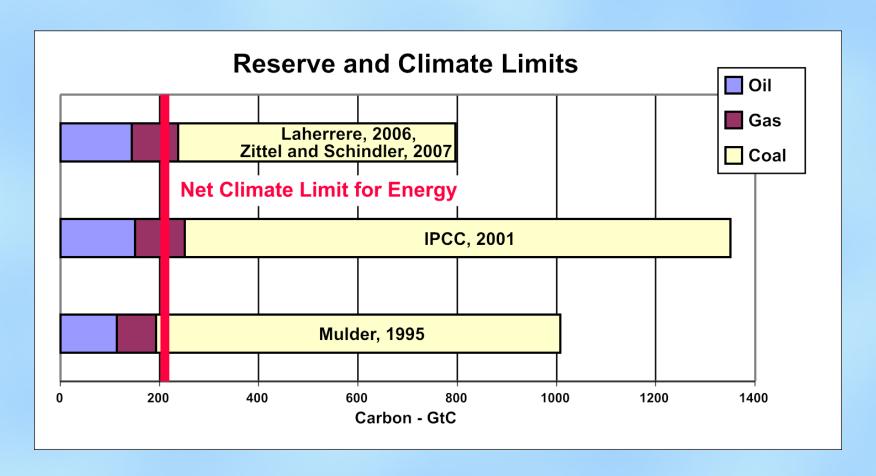

- Livestock GHG: 1.25 GtCeq/y (FAO, for 2004)

= Net Climate Limit for Energy: **2.05** GtCeq/y max.

I.e. Net Climate Limit for Energy for 2000-2100: 205 GtCeq


Carbon Reserves - 'Peaking'

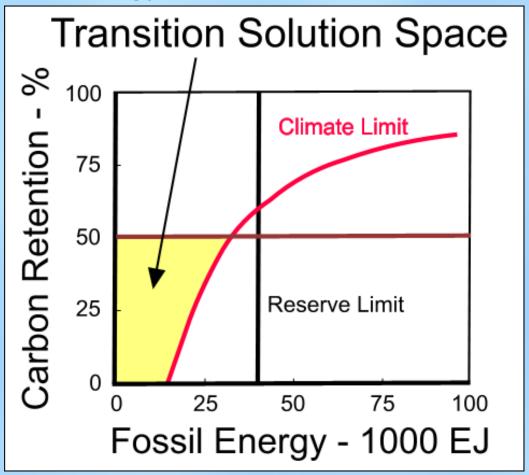
All depletable energy and material sources are finite. Hence the yields must 'peak' as in 'Peak Oil/Gas/Coal'.


Carbon Reserves - 'Energy Cliffs'

Depletable energy sources suffer declining 'net energy' and finally an 'energy cliff'.

Carbon Reserve and Climate Limits

With this Net Climate Limit, should we burn any coal?



Carbon Budget

- For any transition, some fossil energy must be invested in current sustainable energy options.
- The 'carbon-equivalent' limit of fission is small, maybe 5-10%.
- Any fossil energy beyond the Net Climate Limit would require Carbon Capture and Storage (CCS).
- This would increase the invested and operating energies, while still being unsustainable.
- Also, CCS would be restricted to large stationary sources.

Transition Solution Space

Carbon Retention (CCS) could not exceed 50%, which might increase fossil energy from 13,000 to 30,000 EJ. (Mulder)

Criteria for Sustainable Energy Solutions

Option Type	
-------------	--

Criteria

Energy Saving (e.g. Insulation) EROI

Energy Efficiency (e.g. CHP)

Thermodynamics

• Renewable Energy (e.g. WT) EROI, Land Area Thermodynamics

EROIs are determined by Life Cycle (Energy) Analysis.

Thermodynamic savings are found by Exergy Analysis.

Exergy Analysis and Energy Saving

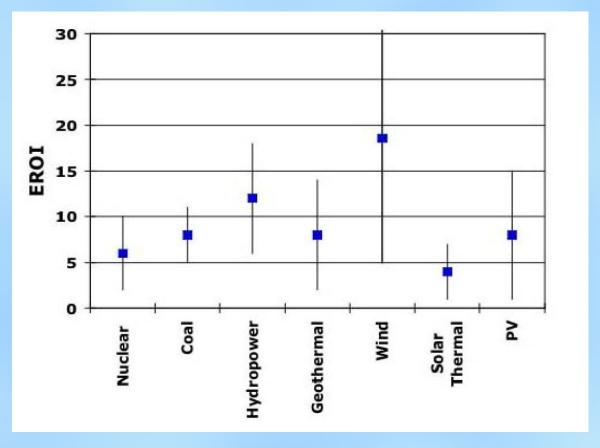
- 'Exergy' is the thermodynamic 'quality' of energy: i.e. the potential to do work (often to generate electricity).
- Ranking: electricity, chemical energy, heat < 100°C
- Exergy Analysis of energy conversion compares current practice with the theoretical limits (Gibbs, Carnot, Nernst).
- Energy can be saved by reducing exergy losses.
- Material energy can be reduced by recycling and substitution.

Exergy Analysis: Materials Systems

- For mineral, fossil and biomass chemicals, the theoretical energy intensity is defined by thermodynamics (Gibbs).
- For mined materials, the theoretical energy intensity also depends upon the type of mineral and it's ore-grade.
- Depletion will increase the energy intensity on both counts.
- Recycling is unlimited in theory.
- Substitution is limited by engineering requirements.

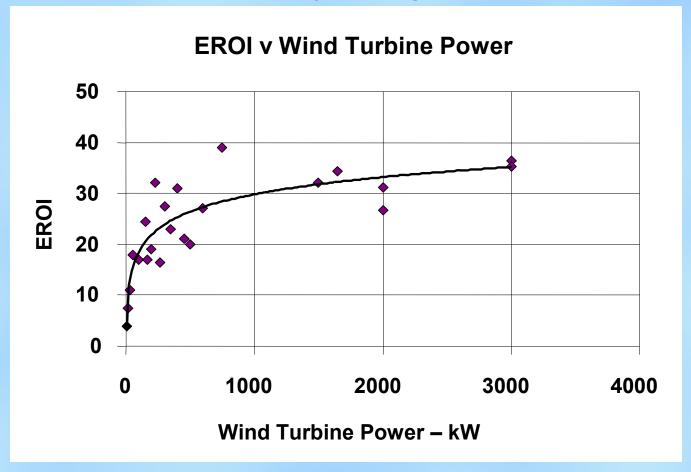
Exergy Analysis: Space Heating

- The largest exergy losses occur in space heating.
- They can be reduced by 'cascading' energy, as in 'Combined Heat and Power' (CHP) generation.
- Fuel savings for heat can be from 0% to 80%, strongly dependant on the type and scale of the CHP unit.
 Hence we should invest only in large units ≈ > 1 MWe.
- Heat from large-scale CHP is used in industry and distributed to towns and cities via District Heating (DH).
- DH is fuel-neutral, so can use renewable sources and become sustainable.


Energy Savings: Electricity

- For electric motors and transformers, more and higher purity copper and iron increase efficiency.
- For electric motors, Permanent Magnet fields and power electronics for easier speed control (cube-law savings).
- For lighting, by changing from incandescent to fluorescent to Light Emitting Diodes (LEDs).
- For example, fluorescent lighting gives 65 to 90 lm/W, but the limit for white light is about 330 lm/W.
- LEDs are expected to give 150 to 200 lm/W by 2020.

EROIs of Electricity Sources


Of the renewable electricity sources:

- Hydropower and Geothermal are good but site-limited.
- Wind Turbines are much better than PV or Solar Thermal.

EROIs of Electricity Sources: Scale Effect

The EROI of Wind Turbines shows a marked scale effect. Hence we should invest only in large machines - MW class.

Energy Use - Housing/Buildings Sector

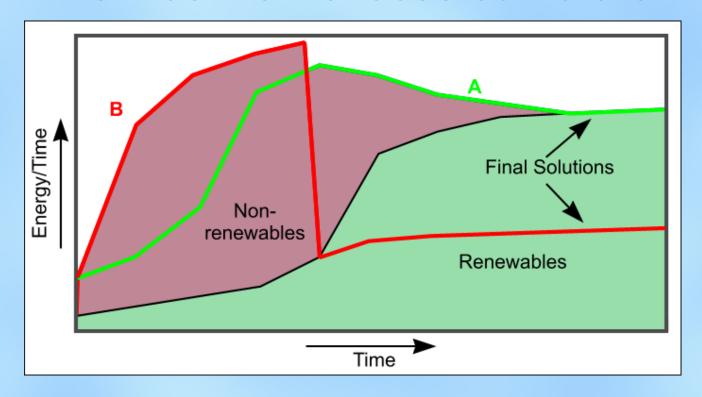
- In conventional housing/buildings, most energy is used in operation notably for space and water heating.
- 'Passive Houses' reduce space heating energy by ~ 90%, yet have similar invested energy of about 100 GJ/capita.
- For existing housing/buildings, replacement would require too much invested energy.
- Hence they should be renovated to PH standards, which can save e.g. 90%, or supplied from DH, saving e.g. 80%.

Energy Use - Transport Sector - 1

- Transport energy must be reduced, with fuels 'carbon capped' and vehicles of increased energy efficiency.
- Invested energy must be minimised by using the reinvestment cycles.
- 'Modal switching' to train, tram, bus, cycling and walking requires long-term integrated planning.
- There are about 800 million road vehicles world-wide, which would take some 15 years to replace.
- Heating and A/C energy is proportional to journey time.

Energy Use - Transport Sector - 2

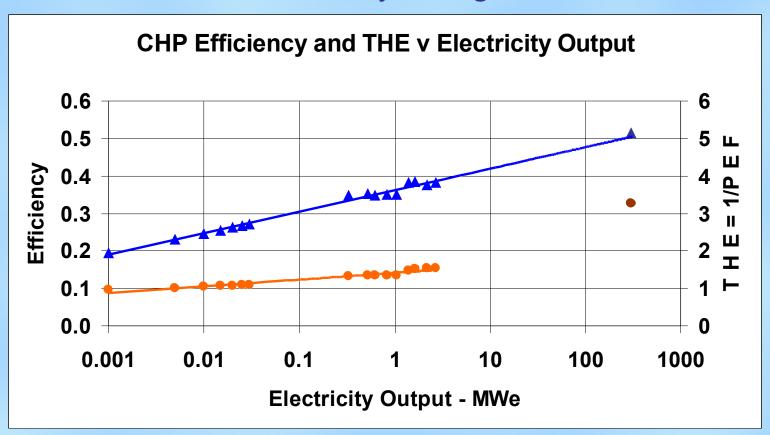
- Consider the whole energy chain 'well-to-wheel'.
- For biofuelled vehicles, this includes biomass feedstock, processing, and distribution as well as use in vehicles.
- For battery electric vehicles, this includes renewable electricity, with additional plant if more than off-peak.
- The energy invested in batteries is significant ~ 2x. Lead and Nickel are scarce and Lithium is reactive.
- Battery recharging rates may be an issue MW.


Transition Studies - World and OECD

- Mulder's Basic (world) model gives sustainable energy flows of e.g. 3500 Watts/capita.
- More detailed studies have been done for some OECD countries - Germany, the UK, and Switzerland.
- These suggest that a transition is possible to a sustainable society, with energy of about 2000 Watts/cap.
- This is about 4000 W of energy savings, 1500 W of renewable energy and 500 W of carbon-equivalent energy.
- The sustainable energy service of about 6000 W/capita would be comparable to that of Switzerland today.

Conclusions

- The fossil energy invested in sustainable energy options and time define the transition whether smooth or abrupt.
- A smooth transition to a sustainable society requires the energy choices to be science-based.
- The sooner and smoother the transition, the higher the sustainable energy service.
- We must soon reach a consensus on the energy options and acquaint politicians world-wide with this science.
- These are the purposes of this Forum.


We must now choose our future!

Thank You Any Questions?

Exergy Analysis of CHP

For CHP, the Thermal Efficiency for power, and the Primary Energy Factor for heat vary markedly with scale. Hence we should invest only in large units $\approx > 1$ MWe.

References

Mulder, H.A.J, 1995, 'Back to Our Future', ISBN 90 367 0517 7.

Mulder, H.A.J. and Biesiot, W. 1998, 'Transition to a Sustainable Society', ISBN 978 1 85898 731 6.

IPCC, 2007, 'Working Group 1 Summary for Policymakers', 'AR4WG1_Pub_SPM-v2.pdf', p16.

FAO, 2006, 'Livestock's Long Shadow', 'A0701E00.pdf', Table 3.12.

Fischedick et al, 2002, 'Langfristzenarien fuer eine nachhaltige Energie-nutzung in Deutschland', http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/publications/UBA_Langfrist_SummaryII.pdf

Taylor G., 2002, 'Energy Solutions for 60% Carbon Reduction', http://www.energypolicy.co.uk/epolicy.htm

Jochem E. et al, 2002, 'Steps Towards a 2000 Watt Society', http://www.efficientpowersupplies.org/pages/Steps_towards_a_2000_WattSociety.pdf

Jochem E. (ed), 2004, 'Steps towards a sustainable development', http://www.cepe.ethz.ch/publications/Jochem_WhiteBook_on_RD_energyefficient_technologie s.pdf